Features
- Low Voltage Operation: 2.7 V
- High Power: +38dBm (typ) P0.1dB
- High IP3: +56 dBm
- Low Insertion Loss: 0.25 dB @ 1 GHz
- High Isolation: 25 dB @ 1 GHz
- Lead-Free SC70 Package
- 100% Matte Tin Plating over Copper
- Halogen-Free “Green” Mold Compound
- RoHS* Compliant and 260°C Reflow Compatible

Description
M/A-COM’s MASW-008853 is a GaAs PHEMT MMIC single pole double throw (SPDT) high power switch in a low cost SC70 six lead package. The MASW-008853 is ideally suited for applications where high power, low control voltage, low insertion loss, high isolation, small size, and low cost are required.

Typical applications are for CDMA handset systems that connect separate transceiver and/or GPS functions to a common antenna, as well as other related handset and general purpose applications. The MASW-008853 can be used in all systems operating up to 5.0 GHz requiring high power at low control voltage.

The MASW-008853 is fabricated using a 0.5 micron gate length GaAs pHEMT process. The process features full passivation for performance and reliability.

Functional Block Diagram

Pin Configuration

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RF1</td>
<td>RF Port 1</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>RF Ground</td>
</tr>
<tr>
<td>3</td>
<td>RF2</td>
<td>RF Port 2</td>
</tr>
<tr>
<td>4</td>
<td>V2</td>
<td>Vcontrol 2</td>
</tr>
<tr>
<td>5</td>
<td>RFC</td>
<td>RF Common</td>
</tr>
<tr>
<td>6</td>
<td>V1</td>
<td>Vcontrol 1</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power (0.5 - 3 GHz, 3 V Control)</td>
<td>+38 dBm</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>+8.5 volts</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

* M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
GaAs SPDT 2.7 V High Power Switch
DC - 5.0 GHz

Electrical Specifications: $T_A = 25^\circ C, V_C = 0 \text{ V}/2.7 \text{ V}, Z_0 = 50 \Omega$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss6</td>
<td>1 GHz</td>
<td>dB</td>
<td>—</td>
<td>0.30</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>2 GHz</td>
<td>dB</td>
<td>—</td>
<td>0.36</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3 GHz</td>
<td>dB</td>
<td>—</td>
<td>0.45</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>4 GHz</td>
<td>dB</td>
<td>—</td>
<td>0.70</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>5 GHz</td>
<td>dB</td>
<td>—</td>
<td>1.10</td>
<td>—</td>
</tr>
<tr>
<td>Isolation</td>
<td>1 GHz</td>
<td>dB</td>
<td>—</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2 GHz</td>
<td>dB</td>
<td>—</td>
<td>19</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3 GHz</td>
<td>dB</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>4 GHz</td>
<td>dB</td>
<td>—</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>5 GHz</td>
<td>dB</td>
<td>—</td>
<td>11</td>
<td>—</td>
</tr>
<tr>
<td>Return Loss</td>
<td>DC – 3 GHz</td>
<td>dB</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP3</td>
<td>825 MHz</td>
<td>dBm</td>
<td>—</td>
<td>56</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Two Tone, +24 dBm Total Pin, 5 MHz Spacing</td>
<td>dBm</td>
<td>—</td>
<td>-99</td>
<td>—</td>
</tr>
<tr>
<td>Cross Modulation</td>
<td>Two-tone signal input: Tx1 = +22 dBm @ 820 MHz, Tx2 = +22 dBm @ 821 MHz, R_X interfere = -23 dBm @ 869 MHz</td>
<td>dBm</td>
<td>—</td>
<td>-94</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Two-tone signal input: Tx1 = +18 dBm @ 1880 MHz, Tx2 = +18 dBm @ 1881 MHz, R_X interfere = -23 dBm @ 1960 MHz</td>
<td>dBm</td>
<td>—</td>
<td>-94</td>
<td>—</td>
</tr>
<tr>
<td>P0.1dB</td>
<td>1 GHz</td>
<td>dBm</td>
<td>—</td>
<td>38</td>
<td>—</td>
</tr>
<tr>
<td>Trise, Tfall</td>
<td>10% to 90% RF, 90% to 10% RF</td>
<td>nS</td>
<td>—</td>
<td>70</td>
<td>—</td>
</tr>
<tr>
<td>Ton, Toff</td>
<td>50% control to 90% RF, 50% control to 10% RF</td>
<td>nS</td>
<td>—</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>Transients</td>
<td>In Band</td>
<td>mV</td>
<td>—</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Control Current</td>
<td>$V_C = 2.7 \text{ V}$</td>
<td>µA</td>
<td>—</td>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

5. For positive voltage control, external DC blocking capacitors are required on all RF ports.
6. Insertion loss can be optimized by varying the DC blocking capacitor value, e.g. 1000 pF for 100 MHz - 1 GHz, 39 pF for 0.5 GHz - 3 GHz.

Truth Table7,8,9

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
<th>ANT – RF1</th>
<th>ANT – RF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Off</td>
<td>On</td>
</tr>
</tbody>
</table>

7. For positive voltage control, external DC blocking capacitors are required on all RF ports.
8. Differential voltage, V(state 1) - V(state 0), must be +2.7 V minimum, but must not exceed 8.5 V.
9. $0 = -5 \text{ V to } +2.3 \text{ V}, 1 = -2.3 \text{ V to } +5 \text{ V}.$

Qualification

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.
Typical Performance Curves, 1000 pF

Insertion Loss

- Frequency (GHz) vs. Insertion Loss (dB)

Isolation

- Frequency (GHz) vs. Isolation (dB)

RFC Return Loss

- Frequency (GHz) vs. Return Loss (dB)

RF1/RF2 Return Loss

- Frequency (GHz) vs. Return Loss (dB)

RFC Return Loss

- +25 C
- -40 C
- +85 C

RF1/RF2 Return Loss

- +25 C
- -40 C
- +85 C

Lead-Free SC70 Plastic Package†

- Reference Application Note M538 for lead-free solder reflow recommendations.
- Meets JEDEC moisture sensitivity level 1 requirements.

† Reference Application Note M538 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.